Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Clin Infect Dis ; 2023 Mar 11.
Article in English | MEDLINE | ID: covidwho-2327928

ABSTRACT

BACKGROUND: Disentangling the effects of SARS-CoV-2 variants and vaccination on the occurrence of post-acute sequelae of SARS-CoV-2 (PASC) is crucial to estimate and reduce the burden of PASC. METHODS: We performed a cross-sectional analysis (May/June 2022) within a prospective multicenter healthcare worker (HCW) cohort in North-Eastern Switzerland. HCW were stratified by viral variant and vaccination status at time of their first positive SARS-CoV-2 nasopharyngeal swab. HCW without positive swab and with negative serology served as controls. The sum of eighteen self-reported PASC symptoms was modeled with univariable and multivariable negative-binomial regression to analyse the association of mean symptom number with viral variant and vaccination status. RESULTS: Among 2'912 participants (median age 44 years, 81.3% female), PASC symptoms were significantly more frequent after wild-type infection (estimated mean symptom number 1.12, p<0.001; median time since infection 18.3 months), after Alpha/Delta infection (0.67 symptoms, p<0.001; 6.5 months), and after Omicron BA.1 infections (0.52 symptoms, p=0.005; 3.1 months) compared to uninfected controls (0.39 symptoms). After Omicron BA.1 infection, the estimated mean symptom number was 0.36 for unvaccinated individuals, compared to 0.71 with 1-2 vaccinations (p=0.028) and 0.49 with ≥3 prior vaccinations (p=0.30). Adjusting for confounders, only wild-type (adjusted rate ratio [aRR] 2.81, 95% confidence interval [CI] 2.08-3.83) and Alpha/Delta infection (aRR 1.93, 95% CI 1.10-3.46) were significantly associated with the outcome. CONCLUSIONS: Previous infection with pre-Omicron variants was the strongest risk factor for PASC symptoms among our HCW. Vaccination prior to Omicron BA.1 infection was not associated with a clear protective effect against PASC symptoms in this population.

2.
Swiss Med Wkly ; 151: w20475, 2021 02 15.
Article in English | MEDLINE | ID: covidwho-2249422

ABSTRACT

BACKGROUND: SARS-CoV-2/COVID-19, which emerged in China in late 2019, rapidly spread across the world with several million victims in 213 countries. Switzerland was severely hit by the virus, with 43,000 confirmed cases as of 1 September 2020. AIM: In cooperation with the Federal Office of Public Health, we set up a surveillance database in February 2020 to monitor hospitalised patients with COVID-19, in addition to their mandatory reporting system. METHODS: Patients hospitalised for more than 24 hours with a positive polymerase chain-reaction test, from 20 Swiss hospitals, are included. Data were collected in a customised case report form based on World Health Organisation recommendations and adapted to local needs. Nosocomial infections were defined as infections for which the onset of symptoms was more than 5 days after the patient’s admission date. RESULTS: As of 1 September 2020, 3645 patients were included. Most patients were male (2168, 59.5%), and aged between 50 and 89 years (2778, 76.2%), with a median age of 68 (interquartile range 54–79). Community infections dominated with 3249 (89.0%) reports. Comorbidities were frequently reported, with hypertension (1481, 61.7%), cardiovascular diseases (948, 39.5%) and diabetes (660, 27.5%) being the most frequent in adults; respiratory diseases and asthma (4, 21.1%), haematological and oncological diseases (3, 15.8%) were the most frequent in children. Complications occurred in 2679 (73.4%) episodes, mostly respiratory diseases (2470, 93.2% in adults; 16, 55.2% in children), and renal (681, 25.7%) and cardiac (631, 23.8%) complications for adults. The second and third most frequent complications in children affected the digestive system and the liver (7, 24.1%). A targeted treatment was given in 1299 (35.6%) episodes, mostly with hydroxychloroquine (989, 76.1%). Intensive care units stays were reported in 578 (15.8%) episodes. A total of 527 (14.5%) deaths were registered, all among adults. CONCLUSION: The surveillance system has been successfully initiated and provides a robust set of data for Switzerland by including about 80% (compared with official statistics) of SARS-CoV-2/COVID-19 hospitalised patients, with similar age and comorbidity distributions. It adds detailed information on the epidemiology, risk factors and clinical course of these cases and, therefore, is a valuable addition to the existing mandatory reporting.


Subject(s)
COVID-19/epidemiology , Hospitalization/statistics & numerical data , Population Surveillance , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/complications , Child , Child, Preschool , Comorbidity , Female , Humans , Male , Middle Aged , SARS-CoV-2 , Switzerland/epidemiology , Young Adult
3.
Int J Equity Health ; 22(1): 51, 2023 03 23.
Article in English | MEDLINE | ID: covidwho-2283493

ABSTRACT

BACKGROUND: During the 2020/2021 winter, the labour market was under the impact of the COVID-19 pandemic. Changes in socioeconomic resources during this period could have influenced individual mental health. This association may have been mitigated or exacerbated by subjective risk perceptions, such as perceived risk of getting infected with SARS-CoV-2 or perception of the national economic situation. Therefore, we aimed to determine if changes in financial resources and employment situation during and after the second COVID-19 wave were prospectively associated with depression, anxiety and stress, and whether perceptions of the national economic situation and of the risk of getting infected modified this association. METHODS: One thousand seven hundred fifty nine participants from a nation-wide population-based eCohort in Switzerland were followed between November 2020 and September 2021. Financial resources and employment status were assessed twice (Nov2020-Mar2021, May-Jul 2021). Mental health was assessed after the second measurement of financial resources and employment status, using the Depression, Anxiety and Stress Scale (DASS-21). We modelled DASS-21 scores with linear regression, adjusting for demographics, health status, social relationships and changes in workload, and tested interactions with subjective risk perceptions. RESULTS: We observed scores above thresholds for normal levels for 16% (95%CI = 15-18) of participants for depression, 8% (95%CI = 7-10) for anxiety, and 10% (95%CI = 9-12) for stress. Compared to continuously comfortable or sufficient financial resources, continuously precarious or insufficient resources were associated with worse scores for all outcomes. Increased financial resources were associated with higher anxiety. In the working-age group, shifting from full to part-time employment was associated with higher stress and anxiety. Perceiving the Swiss economic situation as worrisome was associated with higher anxiety in participants who lost financial resources or had continuously precarious or insufficient resources. CONCLUSION: This study confirms the association of economic stressors and mental health during the COVID-19 pandemic and highlights the exacerbating role of subjective risk perception on this association.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , Mental Health , Switzerland/epidemiology , SARS-CoV-2 , Longitudinal Studies , Pandemics , Anxiety/epidemiology , Anxiety/etiology , Employment , Depression/epidemiology , Depression/etiology
4.
Infection ; 2023 Mar 04.
Article in English | MEDLINE | ID: covidwho-2283492

ABSTRACT

PURPOSE: We aimed to assess the seroprevalence trends of SARS-CoV-2 antibodies in several Swiss cantons between May 2020 and September 2021 and investigate risk factors for seropositivity and their changes over time. METHODS: We conducted repeated population-based serological studies in different Swiss regions using a common methodology. We defined three study periods: May-October 2020 (period 1, prior to vaccination), November 2020-mid-May 2021 (period 2, first months of the vaccination campaign), and mid-May-September 2021 (period 3, a large share of the population vaccinated). We measured anti-spike IgG. Participants provided information on sociodemographic and socioeconomic characteristics, health status, and adherence to preventive measures. We estimated seroprevalence with a Bayesian logistic regression model and the association between risk factors and seropositivity with Poisson models. RESULTS: We included 13,291 participants aged 20 and older from 11 Swiss cantons. Seroprevalence was 3.7% (95% CI 2.1-4.9) in period 1, 16.2% (95% CI 14.4-17.5) in period 2, and 72.0% (95% CI 70.3-73.8) in period 3, with regional variations. In period 1, younger age (20-64) was the only factor associated with higher seropositivity. In period 3, being aged ≥ 65 years, with a high income, retired, overweight or obese or with other comorbidities, was associated with higher seropositivity. These associations disappeared after adjusting for vaccination status. Seropositivity was lower in participants with lower adherence to preventive measures, due to a lower vaccination uptake. CONCLUSIONS: Seroprevalence sharply increased over time, also thanks to vaccination, with some regional variations. After the vaccination campaign, no differences between subgroups were observed.

5.
BMC Med ; 20(1): 233, 2022 06 20.
Article in English | MEDLINE | ID: covidwho-1962842

ABSTRACT

BACKGROUND: We aimed to determine whether living in a household with children is associated with SARS-CoV-2 seropositivity in adults and investigated interacting factors that may influence this association. METHODS: SARS-CoV-2 serology testing was performed in randomly selected individuals from the general population between end of October 2020 and February 2021 in 11 cantons in Switzerland. Data on sociodemographic and household characteristics, employment status, and health-related history was collected using questionnaires. Multivariable logistic regression was used to examine the association of living with children <18 years of age (number, age group) and SARS-CoV-2 seropositivity. Further, we assessed the influence of reported non-household contacts, employment status, and gender. RESULTS: Of 2393 working age participants (18-64 years), 413 (17.2%) were seropositive. Our results suggest that living with children and SARS-CoV-2 seropositivity are likely to be associated (unadjusted odds ratio (OR) 1.22, 95% confidence interval [0.98-1.52], adjusted OR 1.25 [0.99-1.58]). A pattern of a positive association was also found for subgroups of children aged 0-11 years (OR 1.21 [0.90-1.60]) and 12-17 years (OR 1.14 [0.78-1.64]). Odds of seropositivity were higher with more children (OR 1.14 per additional child [1.02-1.27]). Men had higher risk of SARS-CoV-2 infection when living with children than women (interaction: OR 1.74 [1.10-2.76]). CONCLUSIONS: In adults from the general population living with children seems associated with SARS-CoV-2 seropositivity. However, child-related infection risk is not the same for every subgroup and depends on factors like gender. Further factors determining child-related infection risk need to be identified and causal links investigated. TRIAL REGISTRATION: https://www.isrctn.com/ISRCTN18181860 .


Subject(s)
COVID-19 , SARS-CoV-2 , Adolescent , Adult , COVID-19/epidemiology , Ethnicity , Female , Humans , Male , Seroepidemiologic Studies , Switzerland/epidemiology
6.
Allergy ; 77(12): 3648-3662, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1956682

ABSTRACT

BACKGROUND: Although avian coronavirus infectious bronchitis virus (IBV) and SARS-CoV-2 belong to different genera of the Coronaviridae family, exposure to IBV may result in the development of cross-reactive antibodies to SARS-CoV-2 due to homologous epitopes. We aimed to investigate whether antibody responses to IBV cross-react with SARS-CoV-2 in poultry farm personnel who are occupationally exposed to aerosolized IBV vaccines. METHODS: We analyzed sera from poultry farm personnel, COVID-19 patients, and pre-pandemic controls. IgG levels against the SARS-CoV-2 antigens S1, RBD, S2, and N and peptides corresponding to the SARS-CoV-2 ORF3a, N, and S proteins as well as whole virus antigens of the four major S1-genotypes 4/91, IS/1494/06, M41, and D274 of IBV were investigated by in-house ELISAs. Moreover, live-virus neutralization test (VNT) was performed. RESULTS: A subgroup of poultry farm personnel showed elevated levels of specific IgG for all tested SARS-CoV-2 antigens compared with pre-pandemic controls. Moreover, poultry farm personnel, COVID-19 patients, and pre-pandemic controls showed specific IgG antibodies against IBV strains. These antibody titers were higher in long-term vaccine implementers. We observed a strong correlation between IBV-specific IgG and SARS-CoV-2 S1-, RBD-, S2-, and N-specific IgG in poultry farm personnel compared with pre-pandemic controls and COVID-19 patients. However, no neutralization was observed for these cross-reactive antibodies from poultry farm personnel using the VNT. CONCLUSION: We report here for the first time the detection of cross-reactive IgG antibodies against SARS-CoV-2 antigens in humans exposed to IBV vaccines. These findings may be useful for further studies on the adaptive immunity against COVID-19.


Subject(s)
Antibodies, Viral , COVID-19 , Farmers , Infectious bronchitis virus , Humans , Antibodies, Viral/immunology , COVID-19/prevention & control , Immunoglobulin G , Infectious bronchitis virus/immunology , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Cross Reactions , Poultry , Animals
7.
Antibiotics (Basel) ; 11(6)2022 Jun 11.
Article in English | MEDLINE | ID: covidwho-1911142

ABSTRACT

The aim of this study was to analyze inpatient antibiotic consumption during the first 16 months of the COVID-19 pandemic in Switzerland. The entire period (January 2018-June 2021) was divided into the prepandemic period, the first and second waves, and the intermediate period. In the first year of the pandemic, total overall inpatient antibiotic consumption measured in defined daily doses (DDD) per 100 bed-days remained stable (+1.7%), with a slight increase in ICUs of +4.2%. The increase in consumption of broad-spectrum antibiotics was +12.3% overall and 17.3% in ICUs. The segmented regression model of monthly data revealed an increase in overall antibiotic consumption during the first wave but not during the second wave. In the correlation analysis performed in a subset of the data, a significant positive association was found between broad-spectrum antibiotic consumption and an increasing number of hospitalized COVID-19 patients (p = 0.018). Restricting this dataset to ICUs, we found significant positive correlations between the number of hospitalized COVID-19 patients and total antibiotic consumption (p = 0.007) and broad-spectrum antibiotic consumption (p < 0.001). In conclusion, inpatient antibiotic use during the different periods of the COVID-19 pandemic varied greatly and was predominantly notable for broad-spectrum antibiotics.

8.
Swiss Med Wkly ; 151: w30105, 2021 11 22.
Article in English | MEDLINE | ID: covidwho-1689912

ABSTRACT

BACKGROUND: When the periods of time during and after the first wave of the ongoing SARS-CoV-2/COVID-19 pandemic in Europe are compared, the associated COVID-19 mortality seems to have decreased substantially. Various factors could explain this trend, including changes in demographic characteristics of infected persons and the improvement of case management. To date, no study has been performed to investigate the evolution of COVID-19 in-hospital mortality in Switzerland, while also accounting for risk factors. METHODS: We investigated the trends in COVID-19-related mortality (in-hospital and in-intermediate/intensive-care) over time in Switzerland, from February 2020 to June 2021, comparing in particular the first and the second wave. We used data from the COVID-19 Hospital-based Surveillance (CH-SUR) database. We performed survival analyses adjusting for well-known risk factors of COVID-19 mortality (age, sex and comorbidities) and accounting for competing risk. RESULTS: Our analysis included 16,984 patients recorded in CH-SUR, with 2201 reported deaths due to COVID-19 (13.0%). We found that overall in-hospital mortality was lower during the second wave of COVID-19 than in the first wave (hazard ratio [HR] 0.70, 95% confidence interval [CI] 0.63- 0.78; p <0.001), a decrease apparently not explained by changes in demographic characteristics of patients. In contrast, mortality in intermediate and intensive care significantly increased in the second wave compared with the first wave (HR 1.25, 95% CI 1.05-1.49; p = 0.029), with significant changes in the course of hospitalisation between the first and the second wave. CONCLUSION: We found that, in Switzerland, COVID-19 mortality decreased among hospitalised persons, whereas it increased among patients admitted to intermediate or intensive care, when comparing the second wave to the first wave. We put our findings in perspective with changes over time in case management, treatment strategy, hospital burden and non-pharmaceutical interventions. Further analyses of the potential effect of virus variants and of vaccination on mortality would be crucial to have a complete overview of COVID-19 mortality trends throughout the different phases of the pandemic.


Subject(s)
COVID-19 , Hospital Mortality , Hospitals , Humans , Pandemics , SARS-CoV-2 , Switzerland/epidemiology
9.
Euro Surveill ; 27(1)2022 01.
Article in English | MEDLINE | ID: covidwho-1613508

ABSTRACT

BackgroundSince the onset of the COVID-19 pandemic, the disease has frequently been compared with seasonal influenza, but this comparison is based on little empirical data.AimThis study compares in-hospital outcomes for patients with community-acquired COVID-19 and patients with community-acquired influenza in Switzerland.MethodsThis retrospective multi-centre cohort study includes patients > 18 years admitted for COVID-19 or influenza A/B infection determined by RT-PCR. Primary and secondary outcomes were in-hospital mortality and intensive care unit (ICU) admission for patients with COVID-19 or influenza. We used Cox regression (cause-specific and Fine-Gray subdistribution hazard models) to account for time-dependency and competing events with inverse probability weighting to adjust for confounders.ResultsIn 2020, 2,843 patients with COVID-19 from 14 centres were included. Between 2018 and 2020, 1,381 patients with influenza from seven centres were included; 1,722 (61%) of the patients with COVID-19 and 666 (48%) of the patients with influenza were male (p < 0.001). The patients with COVID-19 were younger (median 67 years; interquartile range (IQR): 54-78) than the patients with influenza (median 74 years; IQR: 61-84) (p < 0.001). A larger percentage of patients with COVID-19 (12.8%) than patients with influenza (4.4%) died in hospital (p < 0.001). The final adjusted subdistribution hazard ratio for mortality was 3.01 (95% CI: 2.22-4.09; p < 0.001) for COVID-19 compared with influenza and 2.44 (95% CI: 2.00-3.00, p < 0.001) for ICU admission.ConclusionCommunity-acquired COVID-19 was associated with worse outcomes compared with community-acquired influenza, as the hazards of ICU admission and in-hospital death were about two-fold to three-fold higher.


Subject(s)
COVID-19 , Influenza, Human , Cohort Studies , Hospital Mortality , Hospitalization , Hospitals , Humans , Influenza, Human/diagnosis , Influenza, Human/epidemiology , Intensive Care Units , Male , Pandemics , Retrospective Studies , SARS-CoV-2 , Switzerland/epidemiology
10.
Swiss Med Wkly ; 151: w20547, 2021 07 19.
Article in English | MEDLINE | ID: covidwho-1332302

ABSTRACT

BACKGROUND: As clinical signs of COVID-19 differ widely among individuals, from mild to severe, the definition of risk groups has important consequences for recommendations to the public, control measures and patient management, and needs to be reviewed regularly. AIM: The aim of this study was to explore risk factors for in-hospital mortality and intensive care unit (ICU) admission for hospitalised COVID-19 patients during the first epidemic wave in Switzerland, as an example of a country that coped well during the first wave of the pandemic. METHODS: This study included all (n = 3590) adult polymerase chain reaction (PCR)-confirmed hospitalised patients in 17 hospitals from the hospital-based surveillance of COVID-19 (CH-Sur) by 1 September 2020. We calculated univariable and multivariable (adjusted) (1) proportional hazards (Fine and Gray) survival regression models and (2) logistic regression models for in-hospital mortality and admission to ICU, to evaluate the most common comorbidities as potential risk factors. RESULTS AND DISCUSSION: We found that old age was the strongest factor for in-hospital mortality after having adjusted for gender and the considered comorbidities (hazard ratio [HR] 2.46, 95% confidence interval [CI] 2.33−2.59 and HR 5.6 95% CI 5.23−6 for ages 65 and 80 years, respectively). In addition, male gender remained an important risk factor in the multivariable models (HR 1.47, 95% CI 1.41−1.53). Of all comorbidities, renal disease, oncological pathologies, chronic respiratory disease, cardiovascular disease (but not hypertension) and dementia were also risk factors for in-hospital mortality. With respect to ICU admission risk, the pattern was different, as patients with higher chances of survival might have been admitted more often to ICU. Male gender (OR 1.91, 95% CI 1.58−2.31), hypertension (OR  1.3, 95% CI 1.07−1.59) and age 55–79 years (OR 1.15, 95% CI 1.06−1.26) are risk factors for ICU admission. Patients aged 80+ years, as well as patients with dementia or with liver disease were admitted less often to ICU. CONCLUSION: We conclude that increasing age is the most important risk factor for in-hospital mortality of hospitalised COVID-19 patients in Switzerland, along with male gender and followed by the presence of comorbidities such as renal diseases, chronic respiratory or cardiovascular disease, oncological malignancies and dementia. Male gender, hypertension and age between 55 and 79 years are, however, risk factors for ICU admission. Mortality and ICU admission need to be considered as separate outcomes when investigating risk factors for pandemic control measures and for hospital resources planning.


Subject(s)
COVID-19 , Hospital Mortality , Hospitalization/statistics & numerical data , Pandemics , Adult , Aged , COVID-19/diagnosis , COVID-19/mortality , Comorbidity , Humans , Intensive Care Units , Male , Middle Aged , Prospective Studies , Retrospective Studies , Risk Factors , SARS-CoV-2 , Switzerland/epidemiology
11.
BMC Nephrol ; 22(1): 19, 2021 01 08.
Article in English | MEDLINE | ID: covidwho-1059588

ABSTRACT

BACKGROUND: Acute kidney injury (AKI) associated with severe coronavirus disease 19 (COVID-19) is common and is a significant predictor of morbidity and mortality, especially when dialysis is required. Case reports and autopsy series have revealed that most patients with COVID-19 - associated acute kidney injury have evidence of acute tubular injury and necrosis - not unexpected in critically ill patients. Others have been found to have collapsing glomerulopathy, thrombotic microangiopathy and diverse underlying kidney diseases. A primary kidney pathology related to COVID-19 has not yet emerged. Thus far direct infection of the kidney, or its impact on clinical disease remains controversial. The management of AKI is currently supportive. CASE PRESENTATION: The patient presented here was positive for SARS-CoV-2, had severe acute respiratory distress syndrome and multi-organ failure. Within days of admission to the intensive care unit he developed oliguric acute kidney failure requiring dialysis. Acute kidney injury developed in the setting of hemodynamic instability, sepsis and a maculopapular rash. Over the ensuing days the patient also developed transfusion-requiring severe hemolysis which was Coombs negative. Schistocytes were present on the peripheral smear. Given the broad differential diagnoses for acute kidney injury, a kidney biopsy was performed and revealed granulomatous tubulo-interstitial nephritis with some acute tubular injury. Based on the biopsy findings, a decision was taken to adjust medications and initiate corticosteroids for presumed medication-induced interstitial nephritis, hemolysis and maculo-papular rash. The kidney function and hemolysis improved over the subsequent days and the patient was discharged to a rehabilitation facility, no-longer required dialysis. CONCLUSIONS: Acute kidney injury in patients with severe COVID-19 may have multiple causes. We present the first case of granulomatous interstitial nephritis in a patient with COVID-19. Drug-reactions may be more frequent than currently recognized in COVID-19 and are potentially reversible. The kidney biopsy findings in this case led to a change in therapy, which was associated with subsequent patient improvement. Kidney biopsy may therefore have significant value in pulling together a clinical diagnosis, and may impact outcome if a treatable cause is identified.


Subject(s)
Acute Kidney Injury/etiology , COVID-19/complications , Nephritis, Interstitial/etiology , Granuloma/etiology , Humans , Male , Middle Aged
12.
Dis Markers ; 2021: 8810196, 2021.
Article in English | MEDLINE | ID: covidwho-1039930

ABSTRACT

Several tests based on chemiluminescence immunoassay techniques have become available to test for SARS-CoV-2 antibodies. There is currently insufficient data on serology assay performance beyond 35 days after symptoms onset. We aimed to evaluate SARS-CoV-2 antibody tests on three widely used platforms. A chemiluminescent microparticle immunoassay (CMIA; Abbott Diagnostics, USA), a luminescence immunoassay (LIA; Diasorin, Italy), and an electrochemiluminescence immunoassay (ECLIA; Roche Diagnostics, Switzerland) were investigated. In a multigroup study, sensitivity was assessed in a group of participants with confirmed SARS-CoV-2 (n = 145), whereas specificity was determined in two groups of participants without evidence of COVID-19 (i.e., healthy blood donors, n = 191, and healthcare workers, n = 1002). Receiver operating characteristic (ROC) curves, multilevel likelihood ratios (LR), and positive (PPV) and negative (NPV) predictive values were characterized. Finally, analytical specificity was characterized in samples with evidence of the Epstein-Barr virus (EBV) (n = 9), cytomegalovirus (CMV) (n = 7), and endemic common-cold coronavirus infections (n = 12) taken prior to the current SARS-CoV-2 pandemic. The diagnostic accuracy was comparable in all three assays (AUC 0.98). Using the manufacturers' cut-offs, the sensitivities were 90%, 95% confidence interval [84,94] (LIA), 93% [88,96] (CMIA), and 96% [91,98] (ECLIA). The specificities were 99.5% [98.9,99.8] (CMIA), 99.7% [99.3,99.9] (LIA), and 99.9% [99.5,99.98] (ECLIA). The LR at half of the manufacturers' cut-offs were 60 (CMIA), 82 (LIA), and 575 (ECLIA) for positive and 0.043 (CMIA) and 0.035 (LIA, ECLIA) for negative results. ECLIA had higher PPV at low pretest probabilities than CMIA and LIA. No interference with EBV or CMV infection was observed, whereas endemic coronavirus in some cases provided signals in LIA and/or CMIA. Although the diagnostic accuracy of the three investigated assays is comparable, their performance in low-prevalence settings is different. Introducing gray zones at half of the manufacturers' cut-offs is suggested, especially for orthogonal testing approaches that use a second assay for confirmation.


Subject(s)
Antibodies, Viral/blood , COVID-19/diagnosis , Luminescent Measurements/methods , SARS-CoV-2/immunology , Adult , COVID-19 Testing , Female , Humans , Male , Middle Aged , Predictive Value of Tests , Sensitivity and Specificity
13.
Biomed Res Int ; 2020: 9878453, 2020.
Article in English | MEDLINE | ID: covidwho-934159

ABSTRACT

Knowledge of the sensitivities of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibody tests beyond 35 days after the clinical onset of COVID-19 is insufficient. We aimed to describe positivity rate of SARS-CoV-2 assays employing three different measurement principles over a prolonged period. Two hundred sixty-eight samples from 180 symptomatic patients with COVID-19 and a reverse transcription polymerase chain reaction (RT-PCR) test followed by serological investigation of SARS-CoV-2 antibodies were included. We conducted three chemiluminescence (including electrochemiluminescence assay (ECLIA)), four enzyme-linked immunosorbent assay (ELISA), and one lateral flow immunoassay (LFIA) test formats. Positivity rates, as well as positive (PPVs) and negative predictive values (NPVs), were calculated for each week after the first clinical presentation for COVID-19. Furthermore, combinations of tests were assessed within an orthogonal testing approach employing two independent assays and predictive values were calculated. Heat maps were constructed to graphically illustrate operational test characteristics. During a follow-up period of more than 9 weeks, chemiluminescence assays and one ELISA IgG test showed stable positivity rates after the third week. With the exception of ECLIA, the PPVs of the other chemiluminescence assays were ≥95% for COVID-19 only after the second week. ELISA and LFIA had somewhat lower PPVs. IgM exhibited insufficient predictive characteristics. An orthogonal testing approach provided PPVs ≥ 95% for patients with a moderate pretest probability (e.g., symptomatic patients), even for tests with a low single test performance. After the second week, NPVs of all but IgM assays were ≥95% for patients with low to moderate pretest probability. The confirmation of negative results using an orthogonal algorithm with another assay provided lower NPVs than the single assays. When interpreting results from SARS-CoV-2 tests, the pretest probability, time of blood draw, and assay characteristics must be carefully considered. An orthogonal testing approach increases the accuracy of positive, but not negative, predictions.


Subject(s)
Antibodies, Viral/immunology , Betacoronavirus/immunology , Coronavirus Infections/immunology , Pneumonia, Viral/immunology , Antibodies, Viral/blood , COVID-19 , COVID-19 Testing , Clinical Laboratory Techniques/methods , Coronavirus Infections/blood , Coronavirus Infections/diagnosis , Enzyme-Linked Immunosorbent Assay/methods , Female , Humans , Immunoassay/methods , Immunoglobulin G/blood , Immunoglobulin M/blood , Male , Middle Aged , Pandemics , Pneumonia, Viral/blood , Pneumonia, Viral/diagnosis , Reverse Transcriptase Polymerase Chain Reaction/methods , SARS-CoV-2 , Sensitivity and Specificity , Serologic Tests/methods
14.
Swiss Med Wkly ; 150: w20361, 2020 10 05.
Article in English | MEDLINE | ID: covidwho-892494

ABSTRACT

BACKGROUND: The principality of Liechtenstein had its first COVID-19 case at the beginning of March 2020. After exponential growth, the pandemic’s first wave was contained, with the last case being diagnosed 52 days after the initial occurrence. AIM: To characterise the COVID-19 pandemic in Liechtenstein. METHODS: All patients diagnosed in Liechtenstein were followed up until recovery and again 6–8 weeks after symptom onset. They were contacted every 2 days to record their clinical status until the resolution of their symptoms. The diagnosis of COVID-19 was based on clinical symptoms and molecular testing. Household and close workplace contacts were included in the follow-up, which also comprised antibody testing. In addition, public health measures installed during the pandemic in Liechtenstein are summarised. RESULTS: During the first wave, 5% of the population obtained a reverse transcriptase polymerase chain reaction test. A total of 95 patients (median age 39 years) were diagnosed with COVID-19 (82 who resided in Liechtenstein), resulting in an incidence in Liechtenstein of 0.211%. One patient, aged 94, died (mortality rate 1%). Only 62% of patients could retrospectively identify a potential source of infection. Testing the patients’ household and close workplace contacts (n = 170) with antibody tests revealed that 25% of those tested were additional COVID-19 cases, a quarter of whom were asymptomatic. Those households which adhered to strict isolation measures had a significantly lower rate of affected household members than those who didn’t follow such measures. The national public health measures never restricted free movement of residents. Masks were only mandatory in healthcare settings. The use of home working for the general workforce was promoted. Gatherings were prohibited. Schools, universities, certain public spaces (like sports facilities and playgrounds), childcare facilities, nonessential shops, restaurants and bars were closed. Social distancing, hygienic measures, solidarity and supporting individuals who were at risk were the main pillars of the public health campaigns. CONCLUSION: The close collaboration of all relevant stakeholders allowed for the complete workup of all COVID-19 patients nationwide. A multitude of factors (e.g., young age of the patients, low-threshold access to testing, close monitoring of cases, high alertness and adherence to public health measures by the population) led to the early containment of the first wave of the pandemic, with a very low rate of serious outcomes. Antibody testing for SARS-CoV-2 revealed a substantial proportion of undiagnosed COVID-19 cases among close contacts of the patients.


Subject(s)
Communicable Disease Control , Coronavirus Infections , Monitoring, Physiologic/methods , Pandemics , Pneumonia, Viral , Adult , Asymptomatic Diseases/epidemiology , Betacoronavirus/isolation & purification , COVID-19 , COVID-19 Testing , Clinical Laboratory Techniques/methods , Clinical Laboratory Techniques/statistics & numerical data , Communicable Disease Control/methods , Communicable Disease Control/organization & administration , Contact Tracing , Coronavirus Infections/diagnosis , Coronavirus Infections/epidemiology , Coronavirus Infections/prevention & control , Coronavirus Infections/therapy , Female , Humans , Incidence , Liechtenstein/epidemiology , Male , Pandemics/prevention & control , Pneumonia, Viral/epidemiology , Pneumonia, Viral/prevention & control , Pneumonia, Viral/therapy , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL